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Report

Testing for Genetic Linkage in Families by a Variance-Components
Approach in the Presence of Genomic Imprinting
Sanjay Shete and Christopher I. Amos
Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston

Some genes that affect development and behavior in mammals are known to be imprinted; and �1% of all
mammalian genes are imprinted. Hence, incorporating an imprinting parameter into linkage analysis may increase
the power to detect linkage for these traits. Here we propose theoretical justifications for a recently developed
model for testing of linkage, in the presence of genetic imprinting, between a quantitative-trait locus and a poly-
morphic marker; this is achieved in the variance-components framework. We also incorporate sex-specific recom-
bination fractions into this model. We discuss the effects that imprinting and nonimprinting have on the power of
the usual variance-components method and on the variance-components method that incorporates an imprinting
parameter. We provide noncentrality parameters that can be used to determine the sample size necessary to attain
a specified power for a given significance level, which is useful in the planning of a linkage study. Optimal strategies
for a genome scan of potentially imprinted traits are discussed.

Some genes that affect development and behavior in mam-
mals are known to be imprinted. Genomic imprinting
affects several human genes, including those for Prader-
Willi syndrome, Angelman syndrome, Wilms tumor, and
Beckwith-Wiedemann syndrome (Lalande 1997; Pfeifer
2000). Imprinting results in a higher level of expression
of genes inherited from only one of the two parental chro-
mosomes. Morison et al. (2001) have made an imprinted-
gene database that contains 140 imprinted genes in hu-
mans and other organisms. For excellent reviews of
mechanisms of genomic imprinting, see the work of Pfei-
fer (2000) and Reik and Walter (2001).

Incorporation of information on imprinting into link-
age analysis may result in a more powerful test for linkage.
Recently, Hanson et al. (2001) introduced a method to
test for linkage in the presence of imprinting. In the pre-
sent report, we give a detailed theoretical justification of
the model used to test for linkage, in the presence of
genetic imprinting, between a quantitative-trait locus and
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a polymorphic marker. Because the statistical validity of
any test is important, our report is complementary to the
report by Hanson et al. (2001), since we derive the tests
in terms of important population parameters that allow
complete evaluation of the tests’ properties. We also pro-
vide further details of the modeling strategy. We include
imprinting within the variance-components framework.
We decompose the total additive genetic variance into
parent-specific additive genetic variances and the domi-
nance variance. Testing the equality of these two parent-
specific additive components is a valid test for imprinting
effect. For qualitative traits, imprinting can be tested by
specifying the different penetrance parameters for heter-
ozygotes (Strauch et al. 2000). We also have extended the
model to allow for sex-specific recombination fractions.
This is particularly important when imprinted genes are
studied because of the differences, in some regions of the
genome, between the human-male and human-female re-
combination rates. The exact causes for the differences
are not well understood. On average, the female:male
map-distance ratio is 1.6:1 (Fann and Ott 1995; Broman
et al. 1998), but some regions show a much larger dif-
ference between map distance in females and that in
males; hence, in the imprinting-testing model, it is im-
portant to include this difference between the male and
female recombination fractions.
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Following Amos (1994), let Xi be the phenotypic value
for the ith individual in a pedigree:

s

X p m � g � G � b Z � e , (1)�i i i k i ik
kp1

where m is the overall mean, gi is the major-gene effect,
Gi is the polygenic effect, bk’s are covariate effects that
are assumed to be uncorrelated with genetic and envi-
ronmental factors, and ei is the environmental effect. We
write

a if individual’s genotype is BB
d if individual’s genotype is Bb1g p .i d if individual’s genotype is bB2{
�a if individual’s genotype is bb

Here, without loss of generality, we assume that the first
allele is derived from the father, that the second allele is
derived from the mother, that d is the dominance effect,
and that I is the imprinting effect. Then, d p (d �1

and . When , there is nod )/2 I p (d � d )/2 d p d2 1 2 1 2

imprinting. When there is no dominance, FIF lies within
[0,a], with representing complete imprinting. TheI p a
genetic variance, , at this locus can be decomposed into2jg

three parts: an additive component due to the paternally
derived allele, ; an additive component due to the ma-2jaf

ternally derived allele, ; and the usual dominance com-2jam

ponent, . In Appendix A, we show that2 2j j p pq[(a �d af

and , where2 2 2I) � d(p � q)] j p pq[(a � I) � d(p � q)]am

p and q are the frequencies of alleles B and b, respectively.
Also, . When , and are equal2 2 2 2 2j � j p j I p 0 j ja a a a af m f m

to ; and, when and are equal, . Hence, a1 2 2 2j j j I p 0a a a2 f m

test for equality of these two parent-specific additive var-
iances can be used to test for the presence of imprinting
effect.

Let and be the proportion of alleles (0 or 1)p ptfij tmij

at the trait locus that are identical by descent (IBD) and
derived from the father and mother, respectively. Then,
on the basis of equation (1), the phenotypic covariance
is

( )Cov X ,XF p ,p[ ]i j tfij tmij

2 2 2 2 2j � j � j � j � j if i p ja a d G ef mp .2 2 2 2{p j � p j � D j � f j if i ( jtfij a tmij a tij d ij Gf m

(2)

where Dtij is the probability that a pair of sibs share both
alleles IBD, which is known as the “coefficient of frater-
nity” (Lynch and Walsh 1997), and fij is the coefficient
of relationship, which is for sib pairs. This model will1

2

be useful to test for linkage when polymorphic markers
are available either within or very near the candidate gene.

Generally, we have allele IBD information only for a

marker locus. We can generalize equation (2) for a linked
marker. Let pfij and pmij be the proportions of alleles IBD
at a marker locus derived from the father and mother,
respectively. To obtain covariances between relatives, we
need to determine the joint probability distributions

and , which denote the alleleM p (p ,p ) T p (p ,p )fij mij tfij tmij

IBD–sharing information at the marker locus and the trait
locus, respectively. Let vf and vm be the recombination
fractions for females and males, respectively. Note that
M and T take the values (0,0),(0,1),(1,0), and (1,1), re-
spectively. The joint probability distribution of M and T
for sibs is given in Appendix B. We can write

Cov (X ,XFM) p Cov (X ,XFT)P(TFM) ,�i j i j
T

which, for sib pairs, can be written as

2 2[ ]Cov X ,XF(p ,p ) p2v (1 � v )j � 2v (1 � v )ji j fij mij f f a m m am f

2�4v v (1 � v )(1 � v )jm f m f d

2 2 2�(1 � 2v ) [j � 2v (1 � v )j ]pm a f f d fijf

2 2 2�(1 � 2v ) [j � 2v (1 � v )j ]pf a m m d mijm

2 2 2�(1 � 2v ) (1 � 2v ) j p p .m f d mij fij

(3)

When , this simplifies tov p vf m

2[ ]Cov X ,XF(p ,p ) p2v(1 � v)ji j fij mij g

2 2�2v(v � 1)(1 � 2v � 2v )jd

2 2 2�(1 � 2v) [j � 2v(1 � v)j ]pa d fijf

2 2 2�(1 � 2v) [j � 2v(1 � v)j ]pa d mijm

4 2�(1 � 2v) j p p ,d fij mij

(4)

where v is the recombination fraction between the trait
locus and the marker locus.

A general method for estimation of parent-specific al-
lele sharing between sib pairs is given in Appendix C.
Even though the formulae in Appendix C are valid when
one or both parents’ genotypes are unknown, in such
cases, estimation of allele IBD sharing is less accurate.
From equation (4), it can be seen that the coefficients of

and are equal if and only if and are equal,2 2p p j jfij mij a af m

which are equal if and only if (i.e., there is noI p 0
parental imprinting). Hence, the null hypothesis of no
imprinting can be tested by using the likelihood-ratio
test for . However, if , then this test is2 2j p j v ( va a f mf m

not valid, as can be seen from equation (3). Theoretical
graphs (data not shown) to assess the effect that the
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difference between vf and vm has on type 1 error of the
test confirm simulation-based observation of Hanson et
al. (2001). We found that the test is not sensitive to
modest difference between vf and vm (i.e., female:male
map-distance ratio �5:1). In a genome scan, one ordi-
narily will first test the joint hypotheses of no linkage
and no imprinting, by testing .2 2j p j p 0a af m

All the unknown parameters can be estimated by use
of the maximum-likelihood method if the data are ap-
proximately normally distributed. We implemented the
maximum-likelihood–estimation method by using MAX-
FUN (SAGE 1997) to estimate the unknown parameters.
The likelihood-ratio–test statistic can be converted to a
LOD score by dividing the likelihood ratio by .2 ln (10)e

The test was called “LODimp”—and the2 2H :j p j p 00 a af m

usual test, , was called “LODeq”—by Hanson2H :j p 00 a

et al. (2001). Our simulation results (data not shown)
suggested that the LODimp test was more powerful than
the LODeq test, when we had an imprinting effect. This
is expected, because, in the LODimp test, we incorporated
the imprinting parameter into the analysis; however, when
there was no imprinting, the LODeq test was more pow-
erful than the LODimp test. Although both tests can be
converted to LOD scores, the LODimp test requires more
degrees of freedom than the LODeq test does. The simu-
lation results are verified analytically by computing the
noncentrality parameter of the x2 test statistic and thereby
obtaining the sample size required in order to attain a
certain power for a given significance level.

The likelihood-ratio test is twice the log-likelihood
difference between (a) a model in which and are2 2j ja af m

free to vary and at least one of the two is positive and
(b) a model in which both of these parameters are set
to zero. The test statistic is asymptoti-2(ln L � ln L )1 0

cally a mixture of 0, , and , in the proportions ,12 2x x1 2 4

, and , respectively, under the null hypothesis (Self1 1
2 4

and Liang 1987). Under the alternative hypothesis, the
distribution of the likelihood-ratio test is a noncentral
x2. The noncentrality parameter and the degrees of free-
dom are essential ingredients for calculating both the
sample size required for given expected power and the
chosen critical P value. The noncentrality parameter is
twice the difference between the expected log likelihoods
under the alternate and null hypotheses, evaluated at
their respective asymptotic parameter estimates (Wil-
liams and Blangero 1999; Sham et al. 2000).

From equation (2), it can be seen that, under the null
hypothesis, the asymptotic parameters are

2 2 2 2 2j � j � j � j � j if i p ja a d G ef m

p ,�[ ] 1 1 12 2 2 2N j � j � j � f j if i ( j{ a a d ij Gf m2 2 4

and that, under the alternative hypothesis of link-

age, the asymptotic parameters are given by equa-
tion (4). Let LN and LA be the likelihoods evaluated
at the asymptotic parameter values under the null and
alternative hypotheses, respectively. Then, for a sib-
ship of size s, p andE(2 ln L ) � ln FS F �sN N

E(2 ln L ) pA

� � p ln FSFi i

, where the summation is over all possible marker-�s
genotype configurations and pi is the probability of
the ith configuration (Williams and Blangero 1999;
Sham et al. 2000).

For sib pairs for whom there is complete linkage in-
formation, these covariance matrices have diagonal el-
ements 1, because we fixed the total phenotypic variance
to 1, and have off-diagonal elements given by

1 2p k p j ,� 1 G2Mp(0,0)

1 2 2p k p j � j ,� 2 G af2Mp(1,0)

1 2 2p k p j � j ,� 3 G am2Mp(0,1)

1 2 2 2 2p k p j � j � j � j ,� 4 G a a df m2Mp(1,1)

with probability each. Under the null hypothesis,1p pi 4

these off-diagonal elements are given by

1 1 1 12 2 2 2k p j � j � j � j .0 G a a df m2 2 2 4

Then, the noncentrality parameter per sib pair is

41 2 2l p � ln (1 � k ) � ln (1 � k ) .� i 04 ip1

We typically perform linkage analysis at a linked
marker locus that is not a trait locus. In table 1, we give
joint probability distribution of IBD-sharing informa-
tion for the marker and the loci. The conditional sib-
pair correlations in trait values can be obtained from
the joint distribution in table 1, and, when , theyv p vf m

are given by

2 2c p w k � w(1 � w)(k � k ) � (1 � w) k ,1 1 2 3 4

2 2c p w(1 � w)(k � k ) � w k � (1 � w) k ,2 1 4 2 3

2 2c p w(1 � w)(k � k ) � (1 � w) k � w k ,3 1 4 2 3

2 2c p (1 � w) k � w(1 � w)(k � k ) � w k .4 1 2 3 4
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Table 1

Joint Probability Distribution of M and T

T

JOINT PROBABILITY DISTRIBUTION WHEN M IS

(0,0) (0,1) (1,0) (1,1)

:v p vf m

(0,0) 2w /4 w(1 � w)/4 w(1 � w)/4 2(1 � w) /4
(0,1) w(1 � w)/4 2w /4 2(1 � w) /4 w(1 � w)/4
(1,0) w(1 � w)/4 2(1 � w) /4 2w /4 w(1 � w)/4
(1,1) 2(1 � w) /4 w(1 � w)/4 w(1 � w)/4 2w /4

:v ( vm f

(0,0) w w /4m f w (1 � w )/4m f w (1 � w )/4f m (1 � w )(1 � w )/4m f

(0,1) w (1 � w )/4m f w w /4m f (1 � w )(1 � w )/4m f w (1 � w )/4f m

(1,0) w (1 � w )/4f m (1 � w )(1 � w )/4m f w w /4m f w (1 � w )/4m f

(1,1) (1 � w )(1 � w )/4m f w (1 � w )/4f m w (1 � w )/4m f w w /4m f

Then, the noncentrality parameter of the linkage test,
per sib pair, is

41 2 2l p � ln (1 � c ) � ln (1 � k ) .�I i 04 ip1

When , these conditional sib-pair correlations inv ( vf m

trait values are given by

cs p w w k � w (1 � w )k � w (1 � w )k1 m f 1 m f 2 f m 3

�(1 � w )(1 � w )k ,m f 4

cs p w (1 � w )k � w w k � (1 � w )(1 � w )k2 m f 1 m f 2 m f 3

�w (1 � w )k ,f m 4

cs p w (1 � w )k � (1 � w )(1 � w )k � w w k3 f m 1 m f 2 m f 3

�w (1 � w )k ,m f 4

cs p (1 � w )(1 � w )k � w (1 � w )k4 m f 1 f m 2

�w (1 � w )k � w w k .m f 3 m f 4

Then, the noncentrality parameter of the linkage test
allowing for difference between vf and vm, per sib pair,
is

41 2 2l p � ln (1 � cs ) � ln (1 � k ) .�I i 0s 4 ip1

The noncentrality parameter for the test of linkage, for
the usual variance-components model (i.e., that which

does not incorporate the imprinting parameter), can be
obtained similarly and is

1 12 2l p � ln (1 � r ) � ln (1 � r )U 0 14 2

1 2 2� ln (1 � r ) � ln (1 � k ) ,2 04

where , , and1 1 1 12 2 2 2 2r p j r p j � j r p j � j �0 G 1 G a 2 G a2 2 2 2

.2jd

From these noncentrality parameters, we can obtain
the sample size required in order to have a certain power
and significance level. For linkage analysis, we usually
use .0001 as the significance level, which is approxi-
mately equal to a LOD score of 3. The noncentrality
parameter required in order to have 80% power was
20.8 for the usual variance-components model and was
23.55 for the variance-components model that incor-
porates the imprinting parameter. The required num-
ber of sib pairs can be obtained by dividing these re-
quired noncentrality parameters by the theoretical
noncentrality parameters obtained above. In table 2, we
compare the sample sizes required in order to have 80%
power to detect linkage at a significance level of .0001,
for various values of I. The numbers in parenthesis are
for the usual variance-components model. The domi-
nance variance was assumed to be zero (by choosing

). We chose a value of and an alleled p �d a p 11 2

frequency for p equal to half, which gave 12j p (1 �a 4f

and . It can be seen from table 2 that,12 2 2I) j p (1 � I)a 4m

when , the required sample size was smaller forI p 0
the usual variance-components model than for the var-
iance-components model that incorporates the imprint-
ing parameter. The imprinting model became more pow-
erful only when the imprinting effect was moderate to
large. Because, as far as we know now, only ∼1% of
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Table 2

Sample Sizes for 80% Power to Detect Linkage at a LOD Score of 3, for , with LODimp and LODeqa p 1

v

LODimp(LODeq) When I p

0 .05 .1 .2 .4 .6

.0 453 (400) 445 (398) 425 (389) 356 (358) 201 (257) 95 (146)

.01 495 (437) 487 (434) 464 (425) 389 (391) 220 (281) 105 (161)

.05 710 (627) 698 (622) 666 (610) 558 (562) 318 (409) 157 (242)

.1 1,158 (1,022) 1,139 (1,015) 1,086 (995) 910 (919) 522 (674) 263 (410)

.2 3,732 (3,296) 3,671 (3,274) 3,499 (3,211) 2,933 (2,969) 1,692 (2,200) 874 (1,370)

genes are imprinted, one should usually perform genome
scans with the usual variance-components method and
test for imprinting only if significant evidence for linkage
is observed. However, this may reduce the power when
genes are completely imprinted. As an exceptional sit-
uation, analysis of traits related to development may be
more powerful when an imprinting parameter is in-
cluded. The significance level should be appropriately
adjusted for multiple testing. Both a version of the MUL-
TIC program of the software ACT that incorporates
imprinting and the program used to compute the sample
size required in order to achieve a specific power can be
obtained, on request, from the authors.

Acknowledgments

We thank the two anonymous reviewers for their helpful
constructive comments. We also thank Dr. Maureen Goode for
comments that led to a better presentation of the material in
this report. This work is supported by National Institutes of
Health grants HG 02275 and ES 09912.

Appendix A

Partitioning of Genetic Variance

Table A1

Genotype-Allele–Effect Distribution

Genotype g Xf Xm Frequency

BB a 1 1 p2

Bb d � I 1 0 pq
bB d � I 0 1 pq
bb �a 0 0 2(1 � p)

Let g be the genetic effect defined in the text, and let
and be the gene-content values from the fatherX Xf m

and mother, respectively. is equal to 1 if the diseaseXf

allele B is inherited from the father and is equal to 0
otherwise; is defined similarly. Let p and q be theXm

frequencies of alleles B and b, respectively. g, , andXf

for each genotype are shown in table A1.Xm

For the genetic effect, consider fitting a multiple linear-
regression equation onto and :X X g p b � b X �f m 0 1 f

, where e is the error term.b X � e2 m

On the basis of regression theory and from table A1,
one can show that

Cov (g,X )f
b̂ p p (a � I) � d(p � q) ,1 Var (X )f

Cov (g,X )m
b̂ p p (a � I) � d(p � q) .2 Var (X )m

We also know that , where2 2 2j p j � jg a d

2 ˆ ˆ ˆj p Var (b � b X � b X )a 0 1 f 2 m

2 2ˆ ˆp b Var (X ) � b Var (X )1 f 2 m

2{ }p pq[(a � I) � d(p � q)]
2{ }� pq[(a � I) � d(p � q)]

2 2pj � ja af m

and . So, we partitioned the total genetic2 2 2 2j p 4p q dd

variance into three parts: , the additive genetic com-2jaf

ponent due to the paternally derived allele; , the ad-2jam

ditive genetic component due to the maternally derived
allele; and , the dominance genetic component.2jd

Appendix B

Joint Probability Distribution of M and T

We obtained the joint probability distribution of M and T by a method similar to that described in the work of
Haseman and Elston (1972, Appendix B). Consider the mating and . Let v be the recom-A B /A B A B /A B1 1 2 2 3 3 4 4
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bination fraction between the A and B loci. There are 16 possible genotypes for a child with this parental mating.
If two offspring of these parents have the genotypes and , then, at the marker locus, B, sibsA B /A B A B /A B1 1 3 3 1 1 4 3

share both alleles IBD but, at the trait locus, A, share only the paternal allele IBD. The probability of such sib
types is . There are eight possible sib genotypes with the same probability. Also, if the2[(1 � v) /4][(1 � v)/2](v/2)
sibs genotypes are and , then, again, both alleles in the sibs are IBD at the marker locus, butA B /A B A B /A B1 2 3 3 1 2 4 3

only the paternal allele is IBD at the trait locus. The probability of such genotypes is . There2(v/2)[(1 � v)/2](v /4)
are eight possible sib genotypes with the same probability. Hence,

2 2(1 � v) (1 � v) v v (1 � v) v w(1 � w)
[ ]P T p (1,0),M p (1,1) p8 � 8 p ,[ ] [ ] [ ]4 2 2 2 2 4 4

where . Other probabilities can be obtained similarly and are given in table 1. If and are the2 2w p v � (1 � v) v vf m

sex-specific recombination fractions for females and males, respectively, then the joint probability distribution of
M and T can be obtained by allowing for the differences between and . The probability of sibs having twov vf m

alleles IBD at the marker locus and having a paternal allele at the trait locus is

2 2(1 � v ) (1 � v ) v v (1 � v ) v w (1 � w )m f f f f m m f[ ]P T p (1,0),M p (1,1) p8 � 8 p ,[ ] [ ] [ ]4 2 2 2 2 4 4

where and . The remaining probabilities can be obtained similarly and are2 2 2 2w p v � (1 � v ) w p v � (1 � v )m m m f f f

shown in table 1.

Appendix C

Computation of Parent-Specific IBD

Let and be the marker phenotypes of parents, and let , be the marker phenotypes of p sibs.x y X i p 1, … ,p,0 0 i

Let . The population frequency of genotype ab is denoted byg (x) p P(observing phenotype xF genotype is ab)ab

. The “phenoset” corresponding to a phenotype is the set of all genotypes that could give rise to that phenotype.wab

Let C and D be the phenosets of the first and second parents, respectively. Let rs be an element of C, and let vw
be an element of D.

Then, the likelihood of a nuclear family is

p
1

L(family data) p w g (x ) w g (y )� [g (x ) � g (x ) � g (x ) � g (x )] .� �rs rs 0 w w 0 r j rw j sw j s jv v v v
jp1 4rs wv

Similarly, the joint likelihood of the nuclear family and sibs 1 and 2 having one allele IBD from the father is

L(family data and sibs having one allele IBD from the father)
p

1
p w g (x ) w g (y )� [g (x ) � g (x ) � g (x ) � g (x )]� �rs rs 0 w w 0 r j rw j sw j s jv v v v

jp3 4rs wv

1
# [g (x )g (x ) � g (x )g (x ) � g (x )g (x ) � g (x )g (x )r 1 rw 2 rw 1 r 2 s 1 sw 2 sw 1 s 2v v v v16

�g (x )g (x ) � g (x )g (x ) � g (x )g (x ) � g (x )g (x )] .r 1 r 2 rw 1 rw 2 sw 1 sw 2 s 1 s 2v v v v

Let be the proportion of paternally derived alleles shared IBD by the sibs. Thenpf

L (family data and sibs sharing one allele IBD from father)
P(p p 1F family data) p .f L (family data)

The proportion of maternal alleles shared IBD by sibs can be obtained similarly.
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